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Abstract—Within the framework of QSPR simulation methodology the practicality was demonstrated of fragment
approach for forecasting heat capacity of various class organic compounds. An equation was advanced permitting
reliable prediction of organic compounds heat capacity proceeding from V,, parameter characterizing the molecule

volume, and from fragment descriptors.

Structural theory is the foundation of organic
chemistry. “It is the basis for systematization of million
facts about hundred thousands of individual compounds™
[1]. The core of the structural theory is the structural
formula: just the establishment of the structural formula
of'a chemical compounds provides the knowledge on its
chemical behavior. Within the framework of the structural
theory many important concepts have been developed,
among which we wish to point out homology and
Sfunctional group. The latter is defined as a part of a
structural formula that bears a definite set of qualities,
and moreover, this set possesses transferability. These
concepts were the first basis for rationalizing the
dependence of the properties of organic compounds both
on molecular weight and on the presence in the molecule
of atomic sets bound in a special way. Actually, within
this framework the properties of organic substances may
be regarded as dependent on the molecular “skeleton”
and on the presence of certain functional groups (or
“substituents”), every one of which contributes to the
overall properties.

Moreover, the application of additivity schemes in the
study of properties was quite natural in the framework
of the structural theory. In this case a general property is
described as a sum of contributions from individual atoms
or bonds or groups of atoms bound together (structural
fragments) by an equation

N
A= Mi.ni (1)
1

where A is a value of a property of compound, #, is a
number of structural fragments of a certain kind
(depending on the given scheme), 4; is the contribution
of the corresponding fragment into the property, and N is
the total number of fragment types.

We can mention as examples the classic additive
schemes for calculating molecular refraction {both
through atoms [2, 3] and bonds [4-6]), parachor [7, 8],
heats of combustion and formation [9—13], lipophily [ 14—
17] etc. The additive schemes were often unsatisfactory
(limited to certain classes of compounds, possessed poor
prediction possibility etc.). As a result they were growing
more complicated; probably the most intricate
systematism was developed in the works of Tatevskii and
his team [18].

Actually, the same reasoning underlies the Hammett’s
equation: a general property is regarded as a characteristic
of a certain “core” and it is modified by “substituents”,
and to each substituent is inherent some partial value of
the property. These concepts were developed by Hansch
[14, 15], that further by invoking the approaches based
on graph theory resulted in development of QSAR [19].

It is possible that Smolenskii has been the first to use
the subgraph sets for calculation of physicochemical
properties [20, 21]. A property was regarded as a linear
function of many variables, every one among which was
anumber of specific subgraphs (chains) in the molecular
graph. By and large, all fragment methods are based on
the general formula:

N
A=Ay +Z4; " n; @
1
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where the overall property 4 is represented as a sum of
properties of fragments (that may be overlapping) added
to a certain constant 4,,. However the main development
of QSAR was connected with the use of topologic and
quantum-chemical descriptors of molecular structure, and
also employing physicochemical characteristics
(refraction, lipophily etc.).

The attempts to use in QSAR fragments (subgraphs)
for description of molecular structure (formula) originate
from the general logic of the structural theory. This
concept finds support also in the graph theory: it was
shown that any topologic index may be replaced by
a set of substructural descriptors if the database
“structure-property” is sufficiently large for
building up a statistically valid model [22].

Yet the existing fragment approaches differ in their
definition of structural fragments and ways and strategy
of their generation. The most well-known approach is
the Free-Wilson method underlain by linear regression
analysis using as descrptors “indicator variables” (showing
the presence on lack of a definite fragment) [23]. As
fragments serve usually simple substituents containing a
small number of atoms of different types [24]. The
application of this methodology (even in a very simplified
form) together with topologic indices from the graph
theory or with some experimental parameters (e.g., logP)
also proved to be sufficiently successful.

On the other hand, the fragment approach was
transformed into “fingerprints” analysis [25]. Frequently
for this purpose are used relatively simple, often unmarked
subgraphs. For QSAR purposes all these descriptors are
regarded as variables for various statistical treatments,
like linear regression (LLR), multiple linear regression
(MLR), partial least-squares method (PLS), artificial
neuron nets (ANN), etc. The fragment approach of
Klopman (CASE) [26] and Meylan-Howard (AFC,
atomic fragments contribution) [27] should be separately
considered. Both approaches approximate a molecular
property by summation of local contributions of various
fragments, whereas the fragment contribution depends
on its local neighbor in the molecule. In Klopman
approximation mainly complex fragments are used that
sometimes are associated with biophores and biophobe
sconcepts. In the Meylan-Howard approach monatomic
fragments are mainly applied, whereas the complex nature
of the molecular structure is accounted for by a number
of correcting factors. Estrada publications [28, 29] also
are worth mentioning. Here the spectral moments of lines
contact matrix in the molecular graph are represented as
linear combination of various structural fragments. These
descriptors provided a possibility to build up QSPR

models for a number of physicochemical properties of
individual classes of organic compounds.

In 1990 we developed a subroutine FRAGMENT
capable of generating sets of fragments: chains (1-9
atoms), rings (3—6-membered), and several types of
branched fragments [30—35]. Moreover, each atom in
the fragment was coded depending on its type,
surrounding bonds, and number of neighboring hydrogens
thus providing a possibility to flexibly account for multiple
bonds, functions, heteroatoms etc. The subroutine
FRAGMENT was successfully used in the program
QSAR/QSPR complex EMMA [30-35], and also in the
neuron net complex NASAWIN [35, 36]. We recently
completed the development of a refined version of
subroutine FRAGMENT distinguished by a large number
of fragment types and by more flexible classification of
atoms [37].

Our previous studies in the QSAR/QSPR field tested
the applicability of fragment descriptors (either per se or
combined with other descriptors) for building up QSAR/
QSPR models of physicochemical and biological
properties of organic compounds [38—42]. The advantage
of fragment descriptors lies in a pictorial rendition and
easy structural interpretation of QSAR/QSPR results.
The present study was aimed at investigation of
applicability of structural descriptors to QSPR processing
of organic compounds heat capacity.

The heat capacity is defined as a quantity of heat
required for raising the temperature by 1°C. The heat
capacity data are necessary for calculation of thermo-
dynamic functions, and in practice the heat capacity evalu-
ation is important for calculation of energy balance of
chemical processes in reactors, for selection of optimum
heat transfer agents, etc. The experimental measurement
of heat capacity is relatively labor-consuming and
expensive procedure, and therefore appear QSAR/QSPR
data on simulation of this property [43—45]. Gakh applied
the method of artificial neuron nets to prediction of alkanes
heat capacity (RMS 4.04) [44]. An extensive and versatile
database on heat capacity for various classes of organic
compounds is presented in [45] , and a good QSPR model
is constructed using neuron nets (for complete sampling
RMS 17.141, for teaching sampling RMS 16.857, and for
control sampling RMS 18.744).

EXPERIMENTAL
The database (DB) for the present study was taken

from [45]. It includes 871 heat capacity values for
versatile classes of organic compounds, like alkanes,
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alkenes, alkynes, dienes, cycloalkanes, cycloalkenes,
haloalkanes, haloalkenes, alcohols, carboxylic acids,
carbonyl compounds, esters, amines, aromatic amines,
nitriles, pyridines, sulfides, thiophenes, polyfunctional and
various aromatic compounds. Hence we deal with a
structurally dissimilar access. The total volume of DB is
871 compound. For building up QSPR models of DB we
developed special programs MEOW and BASTET.”

These programs were used for checking the BD
compiled in [45], and errors and double entering of
structures was revealed. The personal contacts with
Xiaojun et al. permitted to make the following corrections
in the DB: 1. Compound numbered 235 should be 3-
methyl-1,2-butadiene, heat capacity 152.08. 2. Compound
numbered 528 should be octane, heat capacity 254.71. 3.
Compound numbered 515 should be 1-diacetoxy-2-eth-
oxyethane, heat capacity 300.32. 4. Compound numbered
821, described as nonylphenol is the ortho-isomer. We
used in the study program QSAR/QSPR complex EMMA
developed at the Chemical Department of the Moscow
State University [30—35], neuron net NASAWIN [35,
36], and combined therewith refined version of routine
FRAGMENT.

In the first stage of the study we performed a search
for uniparametric correlation with the use of all descriptors
involved in EMMA program. The most statistically
significant proved to be descriptor V, [46, 47] that was
the measure of molecular volume. This descriptor was
calculated according to the formula.

V. =16.35N,+8.7IN, + 12.43N, + 14.39N, + 10.48N, +
20.95N,,+6.21N, +34.53N,+22.91N, + 24.87N,—6.56N,

3

where N¢, Ny, No, Ny, N, Ncyjs Ngps Np, Ng, Np are
numbers of atoms of the corresponding element contained
in the molecule, and N, is the number of bonds in the
molecule (it should be noted that the above formula is
valid only for compounds containing the listed types of
atoms).

The uniparametric QSPR equation C =3.3V, + 6.86
obtained has the following statistical parameters for the
teaching sampling R? 0.9359, s 27.4, F 10858, maximum
error (for oleic acid) 121.6 J mol~! K-, and for the control
sampling R 0.9381, average error is equal to 20.8, maxi-
mum error (for 1,3-propylene glycol) 103.7 J mol! K.

In the next stage of the study intermediate models

* Authors can supply programs MEOW and BASTET on special
request.

were constructed in order to facilitate the choice of
descriptors for simulating the total DB. To this end we
built up models basing on ¥, index with stepwise addition
of fragment descriptors (Table 1).

Further individual models were constructed for the
following groups of compounds: hydrocarbons, nitrogen-
containing, sulfur-containing, oxygen-containing, halogen-
containing, and bifunctional compounds (Table 2).

Taking into consideration all the data obtained we built
up a model “structure—property” for total DB. In
constructing the general model we used V. index and
the set of fragment descriptors found in modeling of heat
capacity for compounds groups. The constructed QSPR
model (equation 4) possesses the following statistical
parameters: R> 0.9787, s 15.86, F 5667 (Fig. 1), and
for the control sampling the average error is equal to
13.081 J mol™! K~!, R? 0.9750, F 769 (Fig. 2). In the
QSPR equation obtained is included V, index and five
fragment descriptors characteristic of the compounds
classes involved in the access:

C=-3.942+1.944V,+27.681D2 + 11.655D3 +3.778D4
+26.985 D5 + 10.864 D18 @)

As follows from the values of Student criterion
(Table 3) the contribution of V, index into the QSPR
model obtained is the largest. Into the final QSPR equation
is beside included a set of fragment descriptors for
structural features of individual compounds classes. For
instance, in presentation of oxygen-containing compounds
descriptors D2 and, D3 are employed taking into account
respectively the number of oxygens atoms and hydroxy
groups in the molecule. The application of two descriptors
for the oxygen-containing compounds is due to versatility
of structures of this type occurring in DB (alcohols,
carboxylic acids, esters, aldehydes and ketones, and
nitrocompounds). The signigicance of these descriptors
also is confirmed by the high values of Student criterion
(Table 3).

The next in significance descriptor according to the
obtained Student criterion value is D18 accounting for
the number of fluorine atoms in a molecule. Apparently
this descriptor gains its significance from the fact, that
the fluorine-containing compounds amount to 4% from
the total DB and 29% from the overall number of halogen
derivatives. On exclusion of this descriptor from the
obtained QSPR equation the R? decreases to 0.9700, and
s increases to 17.70.

Descriptor D4 accounting for the number of of >CH,
groups in a molecule also plays a significant part in the

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 40 No.5 2004



FRAGMENT DESCRIPTORS IN QSPR: APPLICATION TO HEAT CAPACITY CALCULATION 647
Table 1. Statistical parameters of QSPR model for heat capacity based on 7, index and fragment descriptors
descripiors ! 2 | 3 4 : 6 7
Descriptors pi pio2 PLD% pipa p3.pa D1, D2, D3, D4, DS P 119)25,’ o, D3 D4D, 1[)221’)23[)7
Teaching sampling 746 compounds
R’ 0.9359 0.9585 | 0.9643 0.9702 0.9735 0.9754 0.9757
s 27.4 22.1 20.5 18.7 17.7 17.0 16.6
F 10858 8589 6676 6035 5431 4884 4412
Maximum error | 121.6(734) 88.8(74) | 93.0(74) 95.8(125) 97.2(125) 76.5(635) 76.6(635)
Control sampling 125 compounds
R’ 0.9381 0.9573 | 0.9647 0.9679 0.9700 0.9678 0.9702
(ﬁl":rpargezgtrig; 207 172 152 14.1 12.5 143 13.4

Note: Descriptor D1 is index V,, D2 is number of OH groups, D3 is number of oxygen atoms, D4 is number of >CH, groups, D5 is number of
—N fragments, D6 is number of fragments )—(, D7 is number of fragments CH,CH,CH; 734 is oleic acid, 74 is octafluoropropane, 125 is

decafluorobutane, 635 is n-butyl benzoate.

Table 2. Statistical parameters of QSPR model for heat capacity based on V, index and fragment descriptors

Group of compounds

Equation and statistical parameters of QSPR models

Hydrocarbons

C=-7.293 +2.021D1 +2.456D4 — 4.161D8, N = 298, R* = 0.9866, s = 11.0, F = 7210

Sulfur-containing compounds C =—7.846 +2.201D1 —4.108D9 — 35.313D10, N =79, R* = 0.9943, s = 11.0, F = 4392

Halogen-containing
compounds
Nitrogen-containing
compounds

F=176

Oxygen-containing compounds F=1801

Bifunctional compounds 18.0, F =66

C=20.067 + 1.581D1 + 12.107D18 — 4.487D19 — 15.087D20, N = 95, R* = 0.8866, s = 13.2,

C=13.805 + 1.949D1 + 16.500D11 + 6.437D12, N =51, R* = 0.9660, s = 12.7, F = 445
C=-12.132+2.332D1 - 3.861D13 + 4.943D14 + 32.847D2, N = 189, R* = 0.9751, s = 16.3,

C=53271+1.317D1 —22.189D15 + 29.302D16 + 25.230D17, N = 34, R* = 0.9015, s =

Note. Descriptor D8 is number of fragments CH,—CH, D9 is number of fragments C=, D10 is number of fragments S—S, D11 is number of NH,
groups, D12 is number of fragments —Cy,3—N,3, D13 is number of fragments C,,, D14 is number of fragments =CH, D15 is number of
—CHj; groups, D16 is number of fragments C—O, D17 is number of fragments C—N, D18 is number of fluorine atoms, D19 is number of

fragments CC(C)H, D20 is number of fragments Cy,3CLF.

obtained QSPR model. The role of this descriptor in QSPR
equation is multipurpose: it suits for making an allowance
for the length of unsubstituted saturated hydrocarbon
chain, has different values for alkanes and alkenes with
the same number of carbon atoms, and often has different

Table 3. Student criterion values for descriptors of QSPR
model

Descriptor Student criterion
Ve Ve 85.472
D3 0O 16.849
D2 —-OH 16.153
D18 F 13.513
D4 CH, 12.983
D5 -N 11.589

value for isomers (for instance, for 1-butene D4 =1, and
for 2-butene D4 = 0; for 1-propanol descriptor D4 is 2,
whereas for 2-propanol it takes a zero value).

Descriptor D5 included in the equation obtained and
accounting for the number of nitrogen atoms also
corresponds to sufficiently high value of Student criterion
(¢ 11.6). It is worth mentioning that the nitrogen-containing
compounds amount to 9% of the total number of
compounds included in DB. It is apparently just the reason
why this descriptor significantly contributes to the
regression equation obtained. It is also necessary for
description of polyfunctional nitrogen-containing
compounds.

Alongside the linear regression analysis we also
performed simulation with the use of artificial neuron nets
(ANN). The neuron net model was constructed using
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the descriptors involved in equation (4). The input layer
of the net was composed of seven neurons in keeping
with the number of the preliminary selected descriptors,
the hidden layer contained three sigmoid neurons, and
the output layer consisted of a single neuron corresponding
to the predicted property. As teaching algorithm was taken
the “generalized delta-rule” [48], parameter of teaching
velocity was 0.25, the value of teaching “moment”
parameter was 0.9. The teaching process was stopped
when the least prediction error for the control sampling
was attained. The obtained QSPR model has the
following statistical parameters: R*> 0.9795, RMS for
teaching sampling 15.7, RMS for control sampling 18.5.
The comparison of result obtained with that of [45] shows
some refinement of RMS value probably because of
removing errors and double structures from DB. On the
other hand, the linear regression model we obtained is
distinguished by sufficiently large correlation factor.

Thus we demonstrated that the heat capacity of the
most classes of organic compounds well correlated with
V. index and fragment descriptors. The fragment
descriptors are easy to calculate and to interpret, and
therefore they can be used in QSPR analysis. It should
be noted that the general model for heat capacity
calculation of organic compounds developed in the
present study is based on taking into account small
fragments and therefore is sufficiently versatile and
applicable to molecules of various dimensions.
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